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Abstract-Heat and mass transfer in radial flow between two parallel disks are analysed. This kind of 
problem is sometimes encountered in chemical engineering and we faced this situation in membrane 
separation processes in which the fluid is fed into the center of the cell and flows towards zones at higher 
radii. In the examined case heat and/or mass are exchanged across one of the two surfaces which confine 
the flow region. An analysis of the transport phenomena of such a geometry is performed by resorting to 
two different mathematical models. As a result the concentration and/or temperature profiles, the transport 
coefficients and the influence of the relevant dimensionless groups are obtained. The capability of the 
models to predict the experimental behavior of the vacuum membrane distillation process is demonstrated. 

INTRODUCTION 

THE FLOW of a fluid between two parallel disks from 
the center of the disks to the higher radii region is 
sometimes encountered in chemical engineering prob- 
lems. Referring to the geometry represented in Fig. 1, 
when the flow is in the creeping regime the velocity 
profile is parabolic in the transverse z-direction [l] 
and according to the equation : 

tl,(r,z) = 6114 1-i , 
( > 

(1) 

and it is varying along the radius Y as U,(Y) is given 
by: 

where v is the volumetric flow rate. However, the 
most interesting problems in such a geometry involve 
also heat and/or mass transfer phenomena for which 
few experimental results and deficient theoretical 
developments and analysis are available in the litera- 
ture. In particular the lack of fundamental works on 
this topic is especially important since the influence of 
the relevant dimensionless groups on the behavior of 
the system may be significantly different from that 
pertaining to the flow in other well-exploited geo- 
metries as through a cylindrical tube or between par- 
allel plates. As a matter of fact there are many cases 
where radial flow is encountered accompanied by heat 
and mass transfer, and examples can be found in injec- 
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tion molding, membrane processes, and reactor oper- 
ation. 

Of course the appraisal and prediction of the trans- 
fer coefficients are essential to the analysis of the prob- 
lems and are of primary importance in the design of 
the apparatus. We faced this situation in different 
studies on membrane separation for which, in many 
cases, the separation performances were determined 
by the transport processes taking place not only within 
the membrane but also in the external fluid phase 
which in our experiments was moving radially through 
parallel disks. 

Unfortunately, the investigation of the problem is 
limited in the literature and apparently a sufficiently 
detailed study is still needed. The case of an uncon- 
fined stream impinging on a flat plate has been dealt 
with in ref. [2] ; but the geometry and the relevant 
boundary conditions are substantially different from 
those we are interested in, so that the results and the 
conclusions obtained in ref. [2] can be extended to 
the current problem only under very special operative 
conditions. Indeed we are interested in the case in 
which heat and/or mass are exchanged only across 
one of the two surfaces which confine the Bow region. 

The current geometry was investigated by Stev- 
enson [3], but the boundary conditions are not exactly 
the same which hold for most of the cases of practical 
interest. Furthermore in ref. [3] the influence of the 
relevant dimensionless groups is not apparent and 
is not analysed and, moreover, the existence of the 
boundary layers is disregarded. In addition the model 
can be used in practice with difficulty as the analytical 
expressions for the local concentration (or tem- 
perature) values are in the form of infinite series which 
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NOMENCLATURE 

clearance between the disks 
molar concentration in the liquid 
phase 
heat capacity 
cell diameter 
mass diffusivity 
heat transfer coefficient in the liquid 
phase 
molar flux 
mass transfer coefficient in the liquid 
phase 
thermal conductivity 
pore permeability, see equation (15) 
molecular weight 
Nusselt number 
pressure 
Prandtl number 
radial coordinate 
Reynolds number 
Schmidt number 
Sherwood number 
temperature 
velocity 
volumetric flaw rate 
mole fraction in the liquid phase 
axial coordinate 
mole fraction in the vapor phase. 

Greek symbols 
a thermal diffusivity 
l- heat or mass diffusivity 

Y, activity coefficient 
6 boundary layer thickness 

q dimensionless independent group 
x, molar latent heat of vaporization 
V kinematic viscosity 

P density 
4 temperature or mass fraction of the 

permeating component 

Subscripts and superscripts 
av average value 
B bulk 
i ith component 
I interface 
L liquid 

F 
mean 
permeate 

r r-direction 
t total 
V vapor 
W wall 
Z z-direction 
0 inlet 
* dimensionless group. 

may converge with difficulty [4, 51 and, in any case, 
the eigenvalues, which appear in those expressions, 
are obtained by rather complex numerical methods. 

The aim of the present work is twofold : (1) to study 
from a fundamental point of view the problem ; and 
(2) to develop suitable models which could be easily 
applied to the description of systems of practical inter- 
est, as those encountered in membrane separations. 

So mathematical models will be considered and 
solved to get: (a) the concentration and/or tem- 

perature profiles and, at the same time, the cor- 
responding boundary layer properties ; (b) the local 
and average transport coefficients ; and (c) the influ- 
ence of the relevant dimensionless groups. The exam- 
ined models will be two of different complexities and 
the corresponding results will be compared with each 
other, in order to obtain information on the limits of 
validity of the simpler model. The comparison will be 
extended also to experimental data to demonstrate the 
usefulness of the fundamental study and the appli- 

Flow distribution inside the cell 

FIG. 1. Flow distribution inside the cell. 
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cability of the models to practical problems when heat 
and mass are transferred between the fluid phase and 
the surface of the disks. This situation holds in the 
examined membrane process. 

ponent in the z-direction is neglected, assuming pure 
diffusion for heat and mass transfer in that direction. 

LPvCque type model 
Some considerations about the two models are now 

in order. In both of them the flow field is assumed to 
be independent of the temperature and concentration 
distribution. This is a likely hypothesis as long as the 
temperature and concentration gradients are rela- 
tively small and, as a consequence, the physico-chemi- 
cal properties are practically uniform throughout the 
region of interest. The mathematical models are so 
developed by adopting a given flow field and by con- 
sidering the local heat and mass balance equations. 

The LCveque type model is a simplified approach 
in which virtually only the boundary layer on the 
membrane surface is considered to establish the heat 
and mass transfer coefficients. In such a scheme the 
velocity field is expressed by the LCvCque approxi- 
mation, given by equation (3). 

As the order of magnitude analysis suggests, the 
diffusive term in the r-direction can be neglected and 
the mass balance can be written as : 

For the first model the velocity profile is given by 
equation (1). As this flow field can be regarded as the 
fully developed radial flow, this model will be denoted 
as the “Graetz” type model, in analogy with the work 
by Graetz for a cylindrical tube 161. For the other 
model a linear velocity profile is assumed in the trans- 
verse z-direction according to the equation : 

with the boundary conditions : 

v,(r,z) = 60, (4 % , (3) 

c, = ciw forz = 0 

c, = c,, forz + co, 

where c, is the molar concentration of the component 
i and 9, is the diffusivity. 

which accounts for consistency with the parabolic pro- 
file in equation (1) in the limit of vanishing values of 
z. This simplification is justified by the observation, 
made by LCv&que [7], that, as long as the boundary 
layers, where the heat and mass gradients are actually 
constrained, are relatively thin, the relevant velocity 
profile can be considered nearly linear with the dis- 
tance from the solid wall. This simple model will be 
therefore denoted as the “LCvCque” type model. The 
previous simplification together with that of neg- 
lecting the diffusive transport in the r-direction allows 
one to solve very easily the balance equations with 
the relevant boundary conditions. Furthermore an 
explicit expression is obtained for the Sherwood or 
Nusselt numbers where the influence of the relevant 
dimensionless groups (Re, SC or Pr and geometric 
length ratios) is neatly apparent. 

It must be pointed out that the clearance b between 
the disks is finite whereas the second boundary con- 
dition is given for z -+ co. Nevertheless, this boundary 
condition may satisfactorily represent the physical 
behaviour as long as the boundary-layer thickness, 
a,, remains significantly smaller than b. The validity 
of this assumption in the LCvCque model must be 
therefore checked a posteriori and in any case may 
represent a limit of this model. 

Equation (4) combined with equations (2) and (3) 
gives : 

where 

‘4=$. 

On the other side the “Graetz” type model is much 
more complex to solve although it can furnish solu- 
tions which can be considered the “exact” ones of the 
problem. 

Equation (5) may be transformed into an ordinary 
differential equation by introducing the following 
dimensionless quantities : 

C,*- 
c,-c, 3 A 

C IX -Cw 
fl= J 189,r* - 

MATHEMATICAL MODELS Then equation (5) becomes : 

In this section the governing equations of the mod- 
els are described in detail. In both models the velocity 
fields evaluated in the absence of mass and heat trans- 
fer are supposed to hold also during the separation 
process. Then the balance equations are solved to get 
temperature and concentration profiles and the heat 
and mass transfer coefficients. 

; + I?$% 0, 
d’c: 

drl- drl 
(6) 

with the boundary conditions : 

c:=O forq=O 

CT= 1 forq-+x 

In view of the very small temperature and com- Equation (6) can be easily solved and after intro- 
position changes within the liquid bulk, constant fluid ducing the relevant boundary conditions the solution 
properties are taken. In addition the velocity corn. is : 
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s ‘I 

exp [ - 4r1’~] d$ 
0 

= 1.7776 ‘I exp [ -4~/‘~] d$. 

exp [ - 4$‘] dy’ s 0 

(7) 

The integrals in equation (7) can be evaluated numeri- 
cally or through a use of a series [8]. Due to the 
analogy between heat and mass transfer problems, the 
same expression holds for the temperature : 

where : 

r* = 1.7776 (8) 

T- T, k T* z ~ ’ A 
T,--T, ‘I= J -z and r=- 

18ctr’ PL:P 

From the knowledge of the concentration and tem- 
perature profiles, one can easily obtain the values of 
the mass and heat transfer coefficients, that is the 
values of the average Sherwood and Nusselt numbers : 

where : 

h (r)r SC = i Pr = v and Re = ~ 
u v ’ 

in which u,(r) is the average velocity of the fluid at a 
given value of the radius r. The transport coefficients 
appearing in equations (9) and (10) are defined 
through the empirical relationship for the heat and 
molar fluxes, respectively, where the driving forces are 
supposed to be the difference of the temperature and 
the concentration values between the inlet and the 
wall at 2 = 0. 

C#I = &, for r = R,, and 0 <z <b 

84 -_=O 
ar 

for r + cc and 0 6 z < b 

C/J = & forR, <r < R and z=O 

a+ -_=O 
a2 

for R < r and z = 0 

a+ -_=() a2 for R. <r and Z= b. 

(13) 

Note that, from the definition of Re and the depen- 
dence of u,,,(r) on r, Re is independent of r. As it is 
expected, the Nusselt (Sherwood) number does not 
depend on the values of the temperature (concen- 
tration) at the solid wall at z = 0, while the parameters 
entering the problems are the geometric length ratios 
R,/R and R/b, and the dimensionless groups Re and 
Pr (SC). Anyway the parameter RJR can be dis- 
regarded as long as it remains substantially smaller 
than unity. 

These boundary conditions imply that : (1) the surface 
at z = 0 and for R, < r < R is maintained at a given 
temperature or concentration as discussed for the LCv- 
Cque model ; (2) the wall at z = b is everywhere ther- 
mally insulated and impermeable ; and (3) at high 
values of the radius no radial variation of the depen- 
dent variable takes place as the heat and mass fluxes 
through the surfaces are constrained at radius smaller 
than R. In any case different downstream boundary 
conditions can affect the solution in the region of 
interest only at a small extent because in the r-direc- 
tion the convective transport is usually more impor- 
tant than the backstream diffusion. Their relative 
importance depends of course on the heat or mass 
P&let number whose value determines also the exten- 
sion of the zone of influence of the downstream 
boundary conditions. 

It must also be observed that, as boundary con- It is easy to realise that, by introducing the same 
dition at z = 0, a fixed value is assumed for the tem- dimensionless quantities of the LCvCque problem, one 
perature or concentration. Actually, for the mem- obtains dimensionless equations where the same 
brane separation processes, this value is not known dimensionless parameters of the LCv&que problem 
nor fixed, but the real condition should be somehow appear. 

intermediate between that of fixed value and that of 
fixed flux. In practice, however, this makes a very 
small difference if the energy or mass flow rate across 
the membrane is small with respect to that entering 
the system, as it happens in the existing processes. 

Graetz type model 
As previously discussed, the solution reported in 

ref. [ 1] of the continuity equation : 

(11) 

has been used for the Graetz type model to describe 
the fully developed velocity held between the parallel 
disks. So a parabolic profile in z-direction results for 
rl,(z, r) at any given r, as equation (1) reflects. 

For the radial geometry the mass and energy bal- 
ances can be written in cylindrical coordinates as : 

(12) 

In equation (12) for the heat (mass) transfer problem 
4 represents the temperature (mass fraction of the 
permeating component) and I the heat (mass) diffu- 
sivity. Referring to Fig. 1 the relevant boundary con- 
ditions are : 
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The set of’ the governing equations can be solved by 
the analytical method outlined by Stevenson [3] and 
Cooney et a/. [4]. However, in our opinion a numerical 
method can be more effectively used for the solution 
due to the drawbacks suffered by the analytical 
method which have been analysed in the introduction. 

So a finite difference numerical method with a con- 
trol-volume approach and staggered grids for C#J and 
the velocity components has been adopted to dis- 
cretize and integrate equation (12) with the boundary 
conditions given by equation (13). 

Once one has obtained the 4 profiles, the fluxes can 
be calculated across the control volume surfaces and 
the transfer coefficients can be obtained between the 
liquid bulk and the solid wall at z = 0. 

In Fig. 2, the temperature and concentration pro- 
files are reported together with the thickness of the 
relevant boundary layers vs the radius Y. One observes 
that, due to the smaller value of the mass diffusivity 
with respect to the heat diffusivity, the mass boundary 
layer is thinner than the heat boundary layer at every 
r. Indeed the values of the ratio of the heat boundary 
layer to that of the mass, reported in Fig. 3 as a 
function of r/R, remains always larger than unity. It 
is worth noticing that for the present geometry this 
ratio is practically independent of Re and is approxi- 
mately equal to (SC/B)“‘, whereas for two parallel 
plates the order of magnitude estimate would indicate 
a proportionality to (Sc/Pr)“*. 

From Fig. 2 it is apparent that, at low value of Re 
and at high value of r, it may happen that all the 
space between the disks is occupied by a temperature 
gradient. Only at very extreme values of Re and r may 
the same phenomenon take place for the concen- 
tration. 

As the LCv&que model leads to an analytical 
expression for the Nusselt (Sherwood) number as a 
function of Re, Pr (SC) and of the ratio R/h, the 

influence of these dimensionless parameters can be 
straightly appreciated from the direct observation of 
the equations (9) and (10). It is so interesting to inves- 
tigate if the same influence holds also for the more 
complete Graetz model. To this aim the results from 
the Graetz model have been reported in Fig. 4 for one 
dimensionless number at a time. The expectations, 
derived from equations (9) and (10) of the LCv&que 
model, are verified also for the Grdetz model. In fact 
from Fig. 4 the slope of the curves in the log-log plot 
is approximately l/3 in most the domain for all the 
intervening parameters, as equations (9) and (10) sug- 
gest. The regions where the slope is no longer l/3 
identify the limits of the LCvCque model. For example. 
as the Reynolds number decreases, the boundary- 
layer thickness increases and ultimately becomes as 
large as the gap between the two disks, so that under 
these conditions the physical behavior cannot be 
described any longer by the boundary-layer approxi- 
mation. 

ELABORATION OF EXPERIMENTAL DATA 

Measures were taken during vacuum membrane 
distillation experiments of dilute aqueous mixtures 
containing ethyl alcohol and some other volatile 
organic compounds. The experimental set up and 
the relevant techniques are described in detail in 
refs. [9, IO]. 

The apparatus employed is quite similar to a per- 
vaporation experimental set up. The experiments were 
performed with two different cells, geometrically not 
similar due to the different values of the ratio between 
the external radius of the cell, R, and the clearance 
between the disks, b. In both cases the inlet liquid 
solution was fed at the center of the cell per- 
pendicularly to the membrane and flowed in radial 

02 - 

/ 
3.0 _3 /1 d. 

0.0 R, 0.26 0.5 0.76 I L 

FIG. 2. Temperature and concentration profiles and heat and mass boundary layers for the cell with 
R/6 = 18.5 at two different values of the Reynolds number. 
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Fio. 3. Ratio between the heat and mass boundary layer thicknesses as a function of the cell radius for 
Sc/Pr = 88 at Re = 450 and 4500. 

direction between two parallel disks. A scheme of the 
apparatus and of the process is given in Fig. 5. 

The experimental apparatus enables a direct 
measurement of the flow rate, the composition and the 
temperature of the feed, the flow rate, the composition 
and the pressure of the permeate, the composition 
and the temperature of the retentate. To calculate the 
transport coefficients from the experimental data, the 
local mathematical model of VMD processes was used 
[9]. In this model the mass transfer coefficient through 
the liquid phase is calculated according to the film 
theory model which gives the following relationship 
[ll] : 

where x,,~ and x,,i are the molar fraction of i in the 
liquid bulk and at the interface, respectively, cL is the 
total molar concentration in the liquid phase, J, and 
J, are the molar fluxes. 

Inside the membrane the molecular mean free path 
of the vapor is larger than the pore size (nominal pore 

loo0 FGizzzT 

Pr 

size = 0.01-O. 1 pm), so that Knudsen diffusion is the 
dominant transport mechanism. It follows that the 
molar flux J, is linearly related to the partial pressure 
difference across the membrane [12] : 

where K,,, is the pore permeability and is measured 
independently by air permeation experiments under 
the same operating conditions (same average pressure 
and pressure drop across the membrane). 

The total molar flux, J,, is obtained by taking the 
sum over all the components : 

(16) 

in which M is an average molecular weight defined 
as : 

(17) 

Re= 1000 Pr=5 
I 
Rb=18.5 Pr=5 

100 

Re 

FIG. 4. Nusselt number as a function of different dimensionless groups. 
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Feed 

FIG. 5. Scheme of the vacuum membrane distillation (VMD) process 

The heat needed for the evaporation is provided by 
the liquid feed, and as a consequence the heat transfer 
coefficient, h, can be calculated from a simple heat 
balance : 

c.0, = WI3 - T,), (18) 

where 2; is the molar latent heat of vaporization for 
the component i. 

The calculation of the transport coefficients requires 
the knowledge of the vapor-liquid equilibrium at the 
interface : 

~IY,., = PTVI) X,,lY,> (19) 

where the activity coefficient, y,, can be obtained by 
using a suitable model for the non-ideal mixture (e.g. 
Van Laar, Wilson, NRTL). 

With the model described above we calculated the 
heat and mass transfer coefficients for the available 
experimental data which are reported in refs. [9, lo]. 

RESULTS 

To test the transport models described above the 
experimental data for the VMD process, reported in 
refs. [9, lo], have been compared with the model pre- 
dictions. 

Firstly the Sherwood and the Nusselt numbers pre- 
dicted at different operating conditions by the models 
are compared with the corresponding measured values 
for the VMD of various organic-water mixtures in a 
cell with D = 7.4 cm. The results are shown in Fig. 6 
for the mass transfer in terms of the Sherwood number 
and in Fig. 7 for the heat transfer in terms of the 
Nusselt number vs the Reynolds number. 

The agreement is very satisfactory for the mass 
transfer, whereas for the heat transfer the scatter in 
the data is a little more noticeable. In any case it can 
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be concluded that the models can interpret quite well 
the behavior of the different kind of mixtures inves- 
tigated. It is worth noting that the predictions by the 
simpler LCv&que model are as good as the ones by the 

1000 

Sh 

100 

i 
10 - 

10 100 1000 10000 

Re 
FIG. 6. Comparison between the average Sherwood number 
predicted by the models of Graetz (-) or Leveque (--) 
for VMD of ethyl alcohol (w), isopropyl alcohol (O), 
acetone (A), methyl acetate (a), ethyl acetate (0) aque- 

ous mixtures 

1000 
R/b =18.5 7 

100 

Nu 

10 

1- 
10 100 1000 10000 

FIG. 7. Comparison between the average Nusselt number 
predicted by the models of Graetz (---) or LCvCque (--) 
for VMD of ethyl alcohol (m), isopropyl alcohol (II), 
acetone (A), methyl acetate (O), ethyl acetate (0) aque- 

ous mixtures. 
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R/b = 1.15 . R/b=185 

Et R/b=775 
1 I , , llliil / I I ,/1/K 1 I I,,, 

10 100 1000 10000 
Re 

FK. 8. Comparison of the predictions by the Graetz model 
and the experimental data for VMD ofethyl alcohol aqueous 
mixtures for two cells of different diameter: dimensionless 
group Sh,[Sc! ’ (R./I)’ ‘1 as a function of Reynolds number. 

Graetz model, since deviations between the results by 
the two different models take place only in regions of 
minor practical interest. 

It must be also pointed out that the models have no 
adjustable parameters, as all the intervening flow and 
physico-chemical properties have been measured or 
evaluated independently. 

For ethyl alcohol-water mixtures the data available 
for two cells, with different diameters, but with the 
same clearance, were compared with the predictions 
of the Graetz model to investigate the influence of 
the geometric ratio R/b. Indeed the two cells are not 
geometrically similar due to the difference in the ratio 
R/b. In this case it is advisable to plot the results 
in terms of the ratio %/[SC”~ (R/b)“3], or 
Nu/[Pr” (R/b)“‘] vs the Reynolds number (see Figs. 
8 and 9). The agreement is still satisfactory. In the 
case of heat transfer the model predictions for the 
two cells deviate significantly from each other at low 
Reynolds numbers. Indeed at these fluodynamic 
regimes the heat boundary layer may occupy the 
whole space between the disks for the larger radii 
pertaining to the D = 7.4 cm cell, whereas the same 
phenomenon does not take place in the smaller cell. 
Such a behavior is not observed in the case of mass 
transfer in the range of Reynolds numbers of practical 

100 

100 1000 10000 

Re 
Fit;. 9. Comparison of the predictions by the Graetz model 
and the experimental data for VMD ofethyl alcohol aqueous 
mixtures for two ceils of different diameter : dimensionless 
group Nu/[Pr’ ’ (Rib)’ ‘1 as a function of Reynolds number. 

0 Heat transfer 
, 1 1 ilillll 1 1 ,,I/,// 1 I /,,I , 

10 100 1000 10000 
Re 

FIG. IO. Comparison of the predictions by the Graetz model 
and the experimental data for VMD ofethyl alcohol aqueous 
mixtures: dimensionless groups %/SC’ ’ and NuiPr’ ’ as a 

function of Reynolds number. 

interest here investigated, as it is apparent in Fig. 10 
where the ratios S/I/SC 3 and Nu/Pr”3 are plotted vs 
the Reynolds number. This is a consequence of the 
fact that the mass boundary layer remains thinner 
than the clearance between the disks, as already dis- 
cussed. 

CONCLUSIONS 

An analysis of the heat and mass transfer in radial 
flow between two parallel disks has been performed 
with the use of two different mathematical models. 
The results obtained with the examined models have 
been compared with the experimental data available 
for the VMD process. In general the adopted models 
even with no adjustable parameters do reproduce with 
good accuracy the behavior of the system in the range 
of practical interest. 

The results from the simple Leveque model agree 
very well with the ones from the more complex Graetz 
model, so that the simpler model can be effectively 
used in most of the cases. They deviate significantly 
only in the case of heat transport at very low Reynolds 
numbers, where the heat boundary layer may extend 
over the whole space between the parallel disks. As 
usual, the mass boundary layer is always thinner than 
the heat boundary layer and the ratio of the heat to 
the mass boundary-layer thickness depends on the 
physical properties, but with a dependency which is 
different from that experienced in other geometries. 

For both the models, the transport coefficients 
depend on the physical properties, the geometry of the 
system and the flow rate. The relevant relationships 
among the dimensionless parameters entering the 
problem have been identified and they reflect the 
singular behavior that pertains to the radial flow. 
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